首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   31006篇
  免费   4883篇
  国内免费   6226篇
测绘学   1434篇
大气科学   4091篇
地球物理   6948篇
地质学   13748篇
海洋学   2735篇
天文学   5197篇
综合类   1480篇
自然地理   6482篇
  2024年   45篇
  2023年   310篇
  2022年   911篇
  2021年   1162篇
  2020年   1301篇
  2019年   1386篇
  2018年   1240篇
  2017年   1279篇
  2016年   1379篇
  2015年   1511篇
  2014年   2001篇
  2013年   2419篇
  2012年   1930篇
  2011年   2220篇
  2010年   2077篇
  2009年   2499篇
  2008年   2413篇
  2007年   2330篇
  2006年   2244篇
  2005年   1906篇
  2004年   1620篇
  2003年   1394篇
  2002年   1192篇
  2001年   992篇
  2000年   794篇
  1999年   678篇
  1998年   576篇
  1997年   438篇
  1996年   321篇
  1995年   298篇
  1994年   250篇
  1993年   231篇
  1992年   153篇
  1991年   123篇
  1990年   94篇
  1989年   73篇
  1988年   64篇
  1987年   33篇
  1986年   39篇
  1985年   43篇
  1984年   35篇
  1983年   27篇
  1982年   22篇
  1981年   10篇
  1980年   14篇
  1979年   6篇
  1978年   6篇
  1977年   15篇
  1973年   2篇
  1954年   3篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
101.
陈敏  曾健  杨伟锋 《海洋学报》2018,40(10):32-41
同位素在确定物质来源、指示生物地球化学循环路径、定量生物地球化学过程速率等方面具有独特的优势,本文以近海生态环境变化研究中常用的稳定同位素(13C、15N、18O)和放射性核素(14C、234Th、232Th、230Th、228Th、210Po、210Pb、137Cs、226Ra、228Ra、224Ra、223Ra)为对象,介绍它们在揭示海洋有机质来源、食物网结构、水体缺氧机制、氮循环过程、颗粒动力学、海底地下水输入、有机地球化学过程、沉积年代学等方面的应用,侧重于总结我国近海生态环境研究中同位素示踪取得的进展。伴随着我国经济的发展,近百年来我国近海生态环境也发生了明显的变化,基于同位素示踪揭示的近海富营养化和沉积环境的演变规律表明,我国近海生态环境自20世纪50年代起经历持续的变化,特别是在过去20~30年时间里,近海生态环境的变化尤为剧烈,反映出人类活动是我国近海生态环境变化的主要驱动力。未来需要通过发展新的同位素技术及拓展更广泛的应用,围绕近海海洋生态环境变化的突出问题,重点揭示近海生态环境变化的响应特征、变化速率和作用机制,从而系统地掌握近海生态环境的时空变化规律。  相似文献   
102.
Structural damage assessment under external loading, such as earthquake excitation, is an important issue in structural safety evaluation. In this regard, an appropriate data analysis and system identification technique is required to interpret the measured data and to identify the state of the structure. Generally, the recursive system identification algorithm is used. In this study, the recursive subspace identification (RSI) algorithm based on the matrix inversion lemma algorithm with oblique projection technique (RSI-Inversion-Oblique) is applied to investigate the time-varying dynamic characteristics. The user-defined parameters used in the RSI-Inversion-Oblique technique are carefully discussed, which include the size of the data Hankel matrix (i), model order to extract the physical modes, and forgetting factor (FF) to detect the time-varying system modal frequencies. Response data from the Northridge earthquake from the Sherman Oaks building (CSMIP) is used as an example to examine a systematic method to determine the suitable user-defined parameters in RSI. It is concluded that the number of rows in the data Hankel matrix significantly influences the identification of the time-varying fundamental modal frequency of the structure. An algorithmic model order selection method using the eigenvalue distribution of RSI-Inversion can detect the system modal frequencies at each appending data window without causing any abnormality.  相似文献   
103.
Di Zhu  Yue Ben  Xinfa Xu 《水文科学杂志》2020,65(12):2128-2141
ABSTRACT

The Ganjiang River is the largest tributary of Poyang Lake in China, and its hydrological regime variation greatly affects the utilization of regional water resources and the ecological environment of the lake. In this study, a novel trend analysis method, the Moving Average over Shifting Horizon (MASH), was applied to investigate the inter- and intra-annual trends of flow and water level from 1976 to 2016 at the Xiajiang and the Waizhou hydrological stations in the Ganjiang River. The Significant Change Rate Method (SCRM) was proposed to determine the MASH averaging parameters. The trend analysis results show a statistically significant decrease in water level series throughout the year and the relationship of flow and water level have changed greatly at the Waizhou station. The sediment load reduction, large-scale sand mining and water level decrease of Poyang Lake are identified as the main causes for the water level decrease.  相似文献   
104.
Surface water flooding (SWF) is a recurrent hazard that affects lives and livelihoods. Climate change is projected to change the frequency of extreme rainfall events that can lead to SWF. Increasingly, data from Regional Climate Models (RCMs) are being used to investigate the potential water-related impacts of climate change; such assessments often focus on broad-scale fluvial flooding and the use of coarse resolution (>12 km) RCMs. However, high-resolution (<4 km) convection-permitting RCMs are now becoming available that allow impact assessments of more localised SWF to be made. At the same time, there has been an increasing demand for more robust and timely real-time forecast and alert information on SWF. In the UK, a real-time SWF Hazard Impact Model framework has been developed. The system uses 1-km gridded surface runoff estimates from a hydrological model to simulate the SWF hazard. These are linked to detailed inundation model outputs through an Impact Library to assess impacts on property, people, transport, and infrastructure for four severity levels. Here, a set of high-resolution (1.5 km and 12 km) RCM data has been used as input to a grid-based hydrological model over southern Britain to simulate Current (1996–2009) and Future (~2100s; RCP8.5) surface runoff. Counts of threshold-exceedance for surface runoff and precipitation (at 1-, 3- and 6-hr durations) are analysed. Results show that the percentage increases in surface runoff extremes, are less than those of precipitation extremes. The higher-resolution RCM simulates the largest percentage increases, which occur in winter, and the winter exceedance counts are greater than summer exceedance counts. For property impacts, the largest percentage increases are also in winter; however, it is the 12-km RCM output that leads to the largest percentage increase in impacts. The added-value of high-resolution climate model data for hydrological modelling is from capturing the more intense convective storms in surface runoff estimates.  相似文献   
105.
The direct H2Oliquid–H2Ovapour equilibration method utilizing laser spectroscopy (DVE-LS) is a way to measure soil pore water stable isotopes. Various equilibration times and calibration methods have been used in DVE-LS. Yet little is known about their effects on the accuracy of the obtained isotope values. The objective of this study was to evaluate how equilibration time and calibration methods affect the accuracy of DVE-LS. We did both spiking and field soil experiments. For the spiking experiment, we applied DVE-LS to four soils of different textures, each of which was subjected to five water contents and six equilibration times. For the field soil experiment, we applied three calibration methods for DVE-LS to two field soil profiles, and the results were compared with cryogenic vacuum distillation (CVD)-LS. Results showed that DVE-LS demonstrated higher δ2H and δ18O as equilibration time increased, but 12 to 24 hr could be used as optimal equilibration time. For field soil samples, DVE-LS with liquid waters as standards led to significantly higher δ2H and δ18O than CVD-LS, with root mean square error (RMSE) of 8.06‰ for δ2H and 0.98‰ for δ18O. Calibration with soil texture reduced RMSE to 3.53‰ and 0.72‰ for δ2H and δ18O, respectively. Further, calibration with both soil texture and water content decreased RMSE to 3.10‰ for δ2H and 0.73‰ for δ18O. Our findings conclude that the calibration method applied may affect the measured soil water isotope values from DVE-LS.  相似文献   
106.
Questions persist about interpreting isotope ratios of bound and mobile soil water pools, particularly relative to clay content and extraction conditions. Interactions between pools and resulting extracted water isotope composition are presumably related to soil texture, yet few studies have manipulated the bound pool to understand its influence on soil water processes. Using a series of drying and spiking experiments, we effectively labelled bound and mobile water pools in soils with varying clay content. Soils were first vacuum dried to remove residual water, which was then replaced with heavy isotope-enriched water prior to oven drying and spiking with heavy isotope-depleted water. Water was extracted via centrifugation or cryogenic vacuum distillation (at four temperatures) and analysed for oxygen and hydrogen isotope ratios via isotope ratio mass spectrometry. Water from centrifuged samples fell along a mixing line between the two added waters but was more enriched in heavy isotopes than the depleted label, demonstrating that despite oven drying, a residual pool remains and mixes with the mobile water. Soils with higher clay + silt content appeared to have a larger bound pool. Water from vacuum distillation samples have a significant temperature effect, with high temperature extractions yielding progressively more heavy isotope-enriched values, suggesting that Rayleigh fractionation occurred at low temperatures in the vacuum line. By distinctly labelling bound and mobile soil water pools, we detected interactions between the two that were dependent on soil texture. Although neither extraction method appeared to completely extract the combined bound and mobile (total water) pool, centrifugation and high temperature cryogenic vacuum distillations were comparable for both δ2H and δ18O of soil water isotope ratios.  相似文献   
107.
108.
Qihua Ran  Feng Wang  Jihui Gao 《水文研究》2020,34(23):4526-4540
Rainfall characteristics are key factors influencing infiltration and runoff generation in catchment hydrology, particularly for arid and semiarid catchments. Although the effect of storm movement on rainfall-runoff processes has been evaluated and emphasized since the 1960s, the effect on the infiltration process has barely been considered. In this study, a physically based distributed hydrological model (InHM) was applied to a typical semi-arid catchment (Shejiagou, 4.26 km2) located in the Loess Plateau, China, to investigate the effect of storm movement on infiltration, runoff and soil erosion at the catchment scale. Simulations of 84 scenarios of storm movement were conducted, including storms moving across the catchment in both the upstream and downstream directions along the main channel, while in each direction considering four storm moving speeds, three rainfall depths and two storm ranges. The simulation results showed that, on both the hillslopes facing downstream (facing south) and in the main channel, the duration of the overland flow process under the upstream-moving storms was longer than that under the downstream-moving storms. Thus, the duration and volume of infiltration under upstream-moving storms were larger in these areas. For the Shejiagou catchment, as there are more hillslopes facing downstream, more infiltration occurred under the upstream-moving storms than the downstream-moving storms. Therefore, downstream-moving storms generated up to 69% larger total runoff and up to 351% more soil loss in the catchment than upstream-moving storms. The difference in infiltration between the storms moving upstream and downstream decreased as the storm moving speed increased. The relative difference in total runoff and sediment yield between the storms moving upstream and downstream decreased with increasing rainfall depth and storm speed. The results of this study revealed that the infiltration differences under moving storms largely influenced the total runoff and sediment yield at the catchment scale, which is of importance in runoff prediction and flood management. The infiltration differences may be a potential factor leading to different groundwater, vegetation cover and ecology conditions for the different sides of the hillslopes.  相似文献   
109.
为研究厦门市弯箱梁自行车桥的地震响应规律,采用SAP2000有限元软件建立自行车高架桥三维壳体模型,在考虑多遇地震和罕遇地震水准作用及不同加载方向的基础上,分别采用反应谱分析法和时程分析法进行该桥的动力响应分析。结果表明:自行车桥z方向位移分量最大,且z方向分量极值均发生在曲线分叉段;相对剪力而言,桥墩竖向支反力相对较小;E1和E2地震水准响应情况随时间的变化趋势基本一致,桥梁结构未进入塑形状态,抗震性能良好,安全性指标较高;反应谱法计算得到的响应包络值相对3条不同的地震时程结果的峰值大,在实际桥梁抗震分析过程中需要综合考虑两者的分析结果。文章研究结果对今后自行车桥设计和抗震性能分析具有指导意义,并可为研究者对该类桥的进一步研究提供借鉴。  相似文献   
110.
The Lower Mississippi Alluvial Valley (LMAV) was home to about ten million hectare bottomland hardwood (BLH) forests in the Southern U.S. It experienced over 80 % area loss of the BLH forests in the past centuries and large-scale afforestation in recent decades. Due to the lack of a high-resolution cropland dataset, impacts of land use change (LUC) on the LMAV ecosystem services have not been fully understood. In this study, we developed a novel framework by integrating the machine learning algorithm, county-level agricultural census, and satellite-based cropland products to reconstruct the LMAV cropland distribution during 1850–2018 at a 30-m resolution. Results showed that the LMAV cropland area increased from 0.78 × 104 km2 in 1850 to 6.64 × 104 km2 in 1980 and then decreased to 6.16 × 104 km2 in 2018. Cropland expansion rate was the largest in the 1960s (749 km2 yr−1) but decreased rapidly thereafter, whereas cropland abandonment rate increased substantially in recent decades with the largest rate of 514 km2 yr−1 in the 2010s. Our dataset has three notable features: (1) the depiction of fine spatial details, (2) the integration of the county-level census, and (3) the inclusion of a machine-learning algorithm trained by satellite-based land cover product. Most importantly, our dataset well captured the continuous increasing trend in cropland area from 1930–1960, which was misrepresented by other cropland datasets reconstructed from the state-level census. Our dataset would be important to accurately evaluate the impacts of historical deforestation and recent afforestation efforts on regional ecosystem services, attribute the observed hydrological changes to anthropogenic and natural driving factors, and investigate how the socioeconomic factors control regional LUC pattern. Our framework and dataset are crucial to developing managerial and policy strategies for conserving natural resources and enhancing ecosystem services in the LMAV.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号